This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrsupexmnf | ⊢ ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( 𝐴 ∪ { -∞ } ) ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ( 𝐴 ∪ { -∞ } ) 𝑦 < 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun | ⊢ ( 𝑦 ∈ ( 𝐴 ∪ { -∞ } ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ { -∞ } ) ) | |
| 2 | simpr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦 ) ) → ( 𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦 ) ) | |
| 3 | velsn | ⊢ ( 𝑦 ∈ { -∞ } ↔ 𝑦 = -∞ ) | |
| 4 | nltmnf | ⊢ ( 𝑥 ∈ ℝ* → ¬ 𝑥 < -∞ ) | |
| 5 | breq2 | ⊢ ( 𝑦 = -∞ → ( 𝑥 < 𝑦 ↔ 𝑥 < -∞ ) ) | |
| 6 | 5 | notbid | ⊢ ( 𝑦 = -∞ → ( ¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞ ) ) |
| 7 | 4 6 | syl5ibrcom | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 = -∞ → ¬ 𝑥 < 𝑦 ) ) |
| 8 | 3 7 | biimtrid | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ { -∞ } → ¬ 𝑥 < 𝑦 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦 ) ) → ( 𝑦 ∈ { -∞ } → ¬ 𝑥 < 𝑦 ) ) |
| 10 | 2 9 | jaod | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦 ) ) → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ { -∞ } ) → ¬ 𝑥 < 𝑦 ) ) |
| 11 | 1 10 | biimtrid | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦 ) ) → ( 𝑦 ∈ ( 𝐴 ∪ { -∞ } ) → ¬ 𝑥 < 𝑦 ) ) |
| 12 | 11 | ex | ⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦 ) → ( 𝑦 ∈ ( 𝐴 ∪ { -∞ } ) → ¬ 𝑥 < 𝑦 ) ) ) |
| 13 | 12 | ralimdv2 | ⊢ ( 𝑥 ∈ ℝ* → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 → ∀ 𝑦 ∈ ( 𝐴 ∪ { -∞ } ) ¬ 𝑥 < 𝑦 ) ) |
| 14 | elun1 | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ( 𝐴 ∪ { -∞ } ) ) | |
| 15 | 14 | anim1i | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 < 𝑧 ) → ( 𝑧 ∈ ( 𝐴 ∪ { -∞ } ) ∧ 𝑦 < 𝑧 ) ) |
| 16 | 15 | reximi2 | ⊢ ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 → ∃ 𝑧 ∈ ( 𝐴 ∪ { -∞ } ) 𝑦 < 𝑧 ) |
| 17 | 16 | imim2i | ⊢ ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ( 𝐴 ∪ { -∞ } ) 𝑦 < 𝑧 ) ) |
| 18 | 17 | ralimi | ⊢ ( ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ( 𝐴 ∪ { -∞ } ) 𝑦 < 𝑧 ) ) |
| 19 | 13 18 | anim12d1 | ⊢ ( 𝑥 ∈ ℝ* → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 ∪ { -∞ } ) ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ( 𝐴 ∪ { -∞ } ) 𝑦 < 𝑧 ) ) ) ) |
| 20 | 19 | reximia | ⊢ ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( 𝐴 ∪ { -∞ } ) ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ( 𝐴 ∪ { -∞ } ) 𝑦 < 𝑧 ) ) ) |