This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any finite or infinite sum in the nonnegative extended reals is convergent. This is a rather unique property of the set [ 0 , +oo ] ; a similar theorem is not true for RR* or RR or [ 0 , +oo ) . It is true for NN0 u. { +oo } , however, or more generally any additive submonoid of [ 0 , +oo ) with +oo adjoined. (Contributed by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrge0tsms2.g | ⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) | |
| Assertion | xrge0tsms2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → ( 𝐺 tsums 𝐹 ) ≈ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0tsms2.g | ⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → 𝐴 ∈ 𝑉 ) | |
| 3 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) | |
| 4 | eqid | ⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) | |
| 5 | 1 2 3 4 | xrge0tsms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → ( 𝐺 tsums 𝐹 ) = { sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ) |
| 6 | xrltso | ⊢ < Or ℝ* | |
| 7 | 6 | supex | ⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ V |
| 8 | 7 | ensn1 | ⊢ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ≈ 1o |
| 9 | 5 8 | eqbrtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → ( 𝐺 tsums 𝐹 ) ≈ 1o ) |