This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any finite or infinite sum in the nonnegative extended reals is convergent. This is a rather unique property of the set [ 0 , +oo ] ; a similar theorem is not true for RR* or RR or [ 0 , +oo ) . It is true for NN0 u. { +oo } , however, or more generally any additive submonoid of [ 0 , +oo ) with +oo adjoined. (Contributed by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrge0tsms2.g | |- G = ( RR*s |`s ( 0 [,] +oo ) ) |
|
| Assertion | xrge0tsms2 | |- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> ( G tsums F ) ~~ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0tsms2.g | |- G = ( RR*s |`s ( 0 [,] +oo ) ) |
|
| 2 | simpl | |- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> A e. V ) |
|
| 3 | simpr | |- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> F : A --> ( 0 [,] +oo ) ) |
|
| 4 | eqid | |- sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) |
|
| 5 | 1 2 3 4 | xrge0tsms | |- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> ( G tsums F ) = { sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ) |
| 6 | xrltso | |- < Or RR* |
|
| 7 | 6 | supex | |- sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. _V |
| 8 | 7 | ensn1 | |- { sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ~~ 1o |
| 9 | 5 8 | eqbrtrdi | |- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> ( G tsums F ) ~~ 1o ) |