This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpsspw | ⊢ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | ⊢ Rel ( 𝐴 × 𝐵 ) | |
| 2 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 3 | snssi | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ⊆ 𝐴 ) | |
| 4 | ssun3 | ⊢ ( { 𝑥 } ⊆ 𝐴 → { 𝑥 } ⊆ ( 𝐴 ∪ 𝐵 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 6 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 7 | 6 | elpw | ⊢ ( { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ↔ { 𝑥 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 8 | 5 7 | sylibr | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 10 | df-pr | ⊢ { 𝑥 , 𝑦 } = ( { 𝑥 } ∪ { 𝑦 } ) | |
| 11 | snssi | ⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ⊆ 𝐵 ) | |
| 12 | ssun4 | ⊢ ( { 𝑦 } ⊆ 𝐵 → { 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 14 | 5 13 | anim12i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑥 } ⊆ ( 𝐴 ∪ 𝐵 ) ∧ { 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) ) |
| 15 | unss | ⊢ ( ( { 𝑥 } ⊆ ( 𝐴 ∪ 𝐵 ) ∧ { 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) ↔ ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ) | |
| 16 | 14 15 | sylib | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 17 | 10 16 | eqsstrid | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 18 | zfpair2 | ⊢ { 𝑥 , 𝑦 } ∈ V | |
| 19 | 18 | elpw | ⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 20 | 17 19 | sylibr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 21 | 9 20 | jca | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ∧ { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) ) |
| 22 | prex | ⊢ { { 𝑥 } , { 𝑥 , 𝑦 } } ∈ V | |
| 23 | 22 | elpw | ⊢ ( { { 𝑥 } , { 𝑥 , 𝑦 } } ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ↔ { { 𝑥 } , { 𝑥 , 𝑦 } } ⊆ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 24 | vex | ⊢ 𝑥 ∈ V | |
| 25 | vex | ⊢ 𝑦 ∈ V | |
| 26 | 24 25 | dfop | ⊢ 〈 𝑥 , 𝑦 〉 = { { 𝑥 } , { 𝑥 , 𝑦 } } |
| 27 | 26 | eleq1i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ↔ { { 𝑥 } , { 𝑥 , 𝑦 } } ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 28 | 6 18 | prss | ⊢ ( ( { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ∧ { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) ↔ { { 𝑥 } , { 𝑥 , 𝑦 } } ⊆ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 29 | 23 27 28 | 3bitr4ri | ⊢ ( ( { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ∧ { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 30 | 21 29 | sylib | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 31 | 2 30 | sylbi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 32 | 1 31 | relssi | ⊢ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) |