This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Cartesian product over relativized indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpriindi | ⊢ ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq1 | ⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ ∅ 𝐵 ) | |
| 2 | 0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐵 = V | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = V ) |
| 4 | 3 | ineq2d | ⊢ ( 𝐴 = ∅ → ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝐷 ∩ V ) ) |
| 5 | inv1 | ⊢ ( 𝐷 ∩ V ) = 𝐷 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = 𝐷 ) |
| 7 | 6 | xpeq2d | ⊢ ( 𝐴 = ∅ → ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( 𝐶 × 𝐷 ) ) |
| 8 | iineq1 | ⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) = ∩ 𝑥 ∈ ∅ ( 𝐶 × 𝐵 ) ) | |
| 9 | 0iin | ⊢ ∩ 𝑥 ∈ ∅ ( 𝐶 × 𝐵 ) = V | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) = V ) |
| 11 | 10 | ineq2d | ⊢ ( 𝐴 = ∅ → ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ V ) ) |
| 12 | inv1 | ⊢ ( ( 𝐶 × 𝐷 ) ∩ V ) = ( 𝐶 × 𝐷 ) | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) = ( 𝐶 × 𝐷 ) ) |
| 14 | 7 13 | eqtr4d | ⊢ ( 𝐴 = ∅ → ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
| 15 | xpindi | ⊢ ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 16 | xpiindi | ⊢ ( 𝐴 ≠ ∅ → ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) | |
| 17 | 16 | ineq2d | ⊢ ( 𝐴 ≠ ∅ → ( ( 𝐶 × 𝐷 ) ∩ ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
| 18 | 15 17 | eqtrid | ⊢ ( 𝐴 ≠ ∅ → ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
| 19 | 14 18 | pm2.61ine | ⊢ ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |