This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Cartesian product over relativized indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpriindi | |- ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq1 | |- ( A = (/) -> |^|_ x e. A B = |^|_ x e. (/) B ) |
|
| 2 | 0iin | |- |^|_ x e. (/) B = _V |
|
| 3 | 1 2 | eqtrdi | |- ( A = (/) -> |^|_ x e. A B = _V ) |
| 4 | 3 | ineq2d | |- ( A = (/) -> ( D i^i |^|_ x e. A B ) = ( D i^i _V ) ) |
| 5 | inv1 | |- ( D i^i _V ) = D |
|
| 6 | 4 5 | eqtrdi | |- ( A = (/) -> ( D i^i |^|_ x e. A B ) = D ) |
| 7 | 6 | xpeq2d | |- ( A = (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( C X. D ) ) |
| 8 | iineq1 | |- ( A = (/) -> |^|_ x e. A ( C X. B ) = |^|_ x e. (/) ( C X. B ) ) |
|
| 9 | 0iin | |- |^|_ x e. (/) ( C X. B ) = _V |
|
| 10 | 8 9 | eqtrdi | |- ( A = (/) -> |^|_ x e. A ( C X. B ) = _V ) |
| 11 | 10 | ineq2d | |- ( A = (/) -> ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) = ( ( C X. D ) i^i _V ) ) |
| 12 | inv1 | |- ( ( C X. D ) i^i _V ) = ( C X. D ) |
|
| 13 | 11 12 | eqtrdi | |- ( A = (/) -> ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) = ( C X. D ) ) |
| 14 | 7 13 | eqtr4d | |- ( A = (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) |
| 15 | xpindi | |- ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i ( C X. |^|_ x e. A B ) ) |
|
| 16 | xpiindi | |- ( A =/= (/) -> ( C X. |^|_ x e. A B ) = |^|_ x e. A ( C X. B ) ) |
|
| 17 | 16 | ineq2d | |- ( A =/= (/) -> ( ( C X. D ) i^i ( C X. |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) |
| 18 | 15 17 | eqtrid | |- ( A =/= (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) |
| 19 | 14 18 | pm2.61ine | |- ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) |