This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpiindi | ⊢ ( 𝐴 ≠ ∅ → ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | ⊢ Rel ( 𝐶 × 𝐵 ) | |
| 2 | 1 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 Rel ( 𝐶 × 𝐵 ) |
| 3 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Rel ( 𝐶 × 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 Rel ( 𝐶 × 𝐵 ) ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 Rel ( 𝐶 × 𝐵 ) ) |
| 5 | reliin | ⊢ ( ∃ 𝑥 ∈ 𝐴 Rel ( 𝐶 × 𝐵 ) → Rel ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ≠ ∅ → Rel ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |
| 7 | relxp | ⊢ Rel ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) | |
| 8 | 6 7 | jctil | ⊢ ( 𝐴 ≠ ∅ → ( Rel ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ∧ Rel ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
| 9 | r19.28zv | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) ) ) | |
| 10 | 9 | bicomd | ⊢ ( 𝐴 ≠ ∅ → ( ( 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 11 | eliin | ⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) ) | |
| 12 | 11 | elv | ⊢ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
| 13 | 12 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) ) |
| 14 | opelxp | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × 𝐵 ) ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵 ) ) | |
| 15 | 14 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵 ) ) |
| 16 | 10 13 15 | 3bitr4g | ⊢ ( 𝐴 ≠ ∅ → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × 𝐵 ) ) ) |
| 17 | opelxp | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 18 | opex | ⊢ 〈 𝑦 , 𝑧 〉 ∈ V | |
| 19 | eliin | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ V → ( 〈 𝑦 , 𝑧 〉 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × 𝐵 ) ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × 𝐵 ) ) |
| 21 | 16 17 20 | 3bitr4g | ⊢ ( 𝐴 ≠ ∅ → ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
| 22 | 21 | eqrelrdv2 | ⊢ ( ( ( Rel ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ∧ Rel ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ∧ 𝐴 ≠ ∅ ) → ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |
| 23 | 8 22 | mpancom | ⊢ ( 𝐴 ≠ ∅ → ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |