This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpexr | ⊢ ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( 𝐴 ∈ V ∨ 𝐵 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | eleq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ V ↔ ∅ ∈ V ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( 𝐴 = ∅ → 𝐴 ∈ V ) |
| 4 | 3 | pm2.24d | ⊢ ( 𝐴 = ∅ → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) ) |
| 5 | 4 | a1d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) ) ) |
| 6 | rnexg | ⊢ ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ran ( 𝐴 × 𝐵 ) ∈ V ) | |
| 7 | rnxp | ⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝐴 ≠ ∅ → ( ran ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐵 ∈ V ) ) |
| 9 | 6 8 | imbitrid | ⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → 𝐵 ∈ V ) ) |
| 10 | 9 | a1dd | ⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) ) ) |
| 11 | 5 10 | pm2.61ine | ⊢ ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) ) |
| 12 | 11 | orrd | ⊢ ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( 𝐴 ∈ V ∨ 𝐵 ∈ V ) ) |