This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpexr | |- ( ( A X. B ) e. C -> ( A e. _V \/ B e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | eleq1 | |- ( A = (/) -> ( A e. _V <-> (/) e. _V ) ) |
|
| 3 | 1 2 | mpbiri | |- ( A = (/) -> A e. _V ) |
| 4 | 3 | pm2.24d | |- ( A = (/) -> ( -. A e. _V -> B e. _V ) ) |
| 5 | 4 | a1d | |- ( A = (/) -> ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) ) |
| 6 | rnexg | |- ( ( A X. B ) e. C -> ran ( A X. B ) e. _V ) |
|
| 7 | rnxp | |- ( A =/= (/) -> ran ( A X. B ) = B ) |
|
| 8 | 7 | eleq1d | |- ( A =/= (/) -> ( ran ( A X. B ) e. _V <-> B e. _V ) ) |
| 9 | 6 8 | imbitrid | |- ( A =/= (/) -> ( ( A X. B ) e. C -> B e. _V ) ) |
| 10 | 9 | a1dd | |- ( A =/= (/) -> ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) ) |
| 11 | 5 10 | pm2.61ine | |- ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) |
| 12 | 11 | orrd | |- ( ( A X. B ) e. C -> ( A e. _V \/ B e. _V ) ) |