This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of xpexg requiring Replacement ( ax-rep ) but not Power Set ( ax-pow ). (Contributed by Mario Carneiro, 20-May-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpexgALT | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunid | ⊢ ∪ 𝑦 ∈ 𝐵 { 𝑦 } = 𝐵 | |
| 2 | 1 | xpeq2i | ⊢ ( 𝐴 × ∪ 𝑦 ∈ 𝐵 { 𝑦 } ) = ( 𝐴 × 𝐵 ) |
| 3 | xpiundi | ⊢ ( 𝐴 × ∪ 𝑦 ∈ 𝐵 { 𝑦 } ) = ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) | |
| 4 | 2 3 | eqtr3i | ⊢ ( 𝐴 × 𝐵 ) = ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) |
| 5 | id | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑊 ) | |
| 6 | fconstmpt | ⊢ ( 𝐴 × { 𝑦 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝑦 ) | |
| 7 | mptexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝑦 ) ∈ V ) | |
| 8 | 6 7 | eqeltrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × { 𝑦 } ) ∈ V ) |
| 9 | 8 | ralrimivw | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) |
| 10 | iunexg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) | |
| 11 | 5 9 10 | syl2anr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) |
| 12 | 4 11 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V ) |