This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of xpexg requiring Replacement ( ax-rep ) but not Power Set ( ax-pow ). (Contributed by Mario Carneiro, 20-May-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpexgALT | |- ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunid | |- U_ y e. B { y } = B |
|
| 2 | 1 | xpeq2i | |- ( A X. U_ y e. B { y } ) = ( A X. B ) |
| 3 | xpiundi | |- ( A X. U_ y e. B { y } ) = U_ y e. B ( A X. { y } ) |
|
| 4 | 2 3 | eqtr3i | |- ( A X. B ) = U_ y e. B ( A X. { y } ) |
| 5 | id | |- ( B e. W -> B e. W ) |
|
| 6 | fconstmpt | |- ( A X. { y } ) = ( x e. A |-> y ) |
|
| 7 | mptexg | |- ( A e. V -> ( x e. A |-> y ) e. _V ) |
|
| 8 | 6 7 | eqeltrid | |- ( A e. V -> ( A X. { y } ) e. _V ) |
| 9 | 8 | ralrimivw | |- ( A e. V -> A. y e. B ( A X. { y } ) e. _V ) |
| 10 | iunexg | |- ( ( B e. W /\ A. y e. B ( A X. { y } ) e. _V ) -> U_ y e. B ( A X. { y } ) e. _V ) |
|
| 11 | 5 9 10 | syl2anr | |- ( ( A e. V /\ B e. W ) -> U_ y e. B ( A X. { y } ) e. _V ) |
| 12 | 4 11 | eqeltrid | |- ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V ) |