This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The connector \/_ is associative. (Contributed by FL, 22-Nov-2010) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Proof shortened by Wolf Lammen, 20-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xorass | ⊢ ( ( ( 𝜑 ⊻ 𝜓 ) ⊻ 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓 ⊻ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor3 | ⊢ ( ¬ ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ↔ ( 𝜑 ↔ ¬ ( 𝜓 ⊻ 𝜒 ) ) ) | |
| 2 | biass | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ) | |
| 3 | xnor | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( 𝜑 ⊻ 𝜓 ) ) | |
| 4 | 3 | bibi1i | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( ¬ ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) |
| 5 | xnor | ⊢ ( ( 𝜓 ↔ 𝜒 ) ↔ ¬ ( 𝜓 ⊻ 𝜒 ) ) | |
| 6 | 5 | bibi2i | ⊢ ( ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ¬ ( 𝜓 ⊻ 𝜒 ) ) ) |
| 7 | 2 4 6 | 3bitr3i | ⊢ ( ( ¬ ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ↔ ( 𝜑 ↔ ¬ ( 𝜓 ⊻ 𝜒 ) ) ) |
| 8 | nbbn | ⊢ ( ( ¬ ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) | |
| 9 | 1 7 8 | 3bitr2ri | ⊢ ( ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ↔ ¬ ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ) |
| 10 | df-xor | ⊢ ( ( ( 𝜑 ⊻ 𝜓 ) ⊻ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) | |
| 11 | df-xor | ⊢ ( ( 𝜑 ⊻ ( 𝜓 ⊻ 𝜒 ) ) ↔ ¬ ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ) | |
| 12 | 9 10 11 | 3bitr4i | ⊢ ( ( ( 𝜑 ⊻ 𝜓 ) ⊻ 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓 ⊻ 𝜒 ) ) ) |