This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0lem1lt | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0lem1lt | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) ) | |
| 2 | 1 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) ) |
| 3 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 4 | 3 | rexrd | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ* ) |
| 5 | pnfge | ⊢ ( 𝑀 ∈ ℝ* → 𝑀 ≤ +∞ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ≤ +∞ ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑀 ≤ +∞ ) |
| 8 | simpll | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) | |
| 9 | peano2rem | ⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) | |
| 10 | ltpnf | ⊢ ( ( 𝑀 − 1 ) ∈ ℝ → ( 𝑀 − 1 ) < +∞ ) | |
| 11 | 8 3 9 10 | 4syl | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀 − 1 ) < +∞ ) |
| 12 | 7 11 | 2thd | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ +∞ ↔ ( 𝑀 − 1 ) < +∞ ) ) |
| 13 | xnn0nnn0pnf | ⊢ ( ( 𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 = +∞ ) | |
| 14 | 13 | adantll | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 = +∞ ) |
| 15 | 14 | breq2d | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ 𝑀 ≤ +∞ ) ) |
| 16 | 14 | breq2d | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 − 1 ) < 𝑁 ↔ ( 𝑀 − 1 ) < +∞ ) ) |
| 17 | 12 15 16 | 3bitr4d | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) ) |
| 18 | 2 17 | pm2.61dan | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) ) |