This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0lem1lt | |- ( ( M e. NN0 /\ N e. NN0* ) -> ( M <_ N <-> ( M - 1 ) < N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0lem1lt | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( M - 1 ) < N ) ) |
|
| 2 | 1 | adantlr | |- ( ( ( M e. NN0 /\ N e. NN0* ) /\ N e. NN0 ) -> ( M <_ N <-> ( M - 1 ) < N ) ) |
| 3 | nn0re | |- ( M e. NN0 -> M e. RR ) |
|
| 4 | 3 | rexrd | |- ( M e. NN0 -> M e. RR* ) |
| 5 | pnfge | |- ( M e. RR* -> M <_ +oo ) |
|
| 6 | 4 5 | syl | |- ( M e. NN0 -> M <_ +oo ) |
| 7 | 6 | ad2antrr | |- ( ( ( M e. NN0 /\ N e. NN0* ) /\ -. N e. NN0 ) -> M <_ +oo ) |
| 8 | simpll | |- ( ( ( M e. NN0 /\ N e. NN0* ) /\ -. N e. NN0 ) -> M e. NN0 ) |
|
| 9 | peano2rem | |- ( M e. RR -> ( M - 1 ) e. RR ) |
|
| 10 | ltpnf | |- ( ( M - 1 ) e. RR -> ( M - 1 ) < +oo ) |
|
| 11 | 8 3 9 10 | 4syl | |- ( ( ( M e. NN0 /\ N e. NN0* ) /\ -. N e. NN0 ) -> ( M - 1 ) < +oo ) |
| 12 | 7 11 | 2thd | |- ( ( ( M e. NN0 /\ N e. NN0* ) /\ -. N e. NN0 ) -> ( M <_ +oo <-> ( M - 1 ) < +oo ) ) |
| 13 | xnn0nnn0pnf | |- ( ( N e. NN0* /\ -. N e. NN0 ) -> N = +oo ) |
|
| 14 | 13 | adantll | |- ( ( ( M e. NN0 /\ N e. NN0* ) /\ -. N e. NN0 ) -> N = +oo ) |
| 15 | 14 | breq2d | |- ( ( ( M e. NN0 /\ N e. NN0* ) /\ -. N e. NN0 ) -> ( M <_ N <-> M <_ +oo ) ) |
| 16 | 14 | breq2d | |- ( ( ( M e. NN0 /\ N e. NN0* ) /\ -. N e. NN0 ) -> ( ( M - 1 ) < N <-> ( M - 1 ) < +oo ) ) |
| 17 | 12 15 16 | 3bitr4d | |- ( ( ( M e. NN0 /\ N e. NN0* ) /\ -. N e. NN0 ) -> ( M <_ N <-> ( M - 1 ) < N ) ) |
| 18 | 2 17 | pm2.61dan | |- ( ( M e. NN0 /\ N e. NN0* ) -> ( M <_ N <-> ( M - 1 ) < N ) ) |