This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetrtri | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) +𝑒 -𝑒 ( 𝐵 𝐷 𝐶 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancomb | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) | |
| 2 | xmettri | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐶 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐵 𝐷 𝐶 ) ) ) | |
| 3 | 1 2 | sylan2b | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐶 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐵 𝐷 𝐶 ) ) ) |
| 4 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ ℝ* ) | |
| 5 | 4 | 3adant3r2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐶 ) ∈ ℝ* ) |
| 6 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐶 ) ∈ ℝ* ) | |
| 7 | 6 | 3adant3r1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐶 ) ∈ ℝ* ) |
| 8 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) | |
| 9 | 8 | 3adant3r3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
| 10 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐶 ) ) | |
| 11 | 10 | 3adant3r2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 0 ≤ ( 𝐴 𝐷 𝐶 ) ) |
| 12 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 0 ≤ ( 𝐵 𝐷 𝐶 ) ) | |
| 13 | 12 | 3adant3r1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 0 ≤ ( 𝐵 𝐷 𝐶 ) ) |
| 14 | ge0nemnf | ⊢ ( ( ( 𝐵 𝐷 𝐶 ) ∈ ℝ* ∧ 0 ≤ ( 𝐵 𝐷 𝐶 ) ) → ( 𝐵 𝐷 𝐶 ) ≠ -∞ ) | |
| 15 | 7 13 14 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐶 ) ≠ -∞ ) |
| 16 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) | |
| 17 | 16 | 3adant3r3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) |
| 18 | xlesubadd | ⊢ ( ( ( ( 𝐴 𝐷 𝐶 ) ∈ ℝ* ∧ ( 𝐵 𝐷 𝐶 ) ∈ ℝ* ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) ∧ ( 0 ≤ ( 𝐴 𝐷 𝐶 ) ∧ ( 𝐵 𝐷 𝐶 ) ≠ -∞ ∧ 0 ≤ ( 𝐴 𝐷 𝐵 ) ) ) → ( ( ( 𝐴 𝐷 𝐶 ) +𝑒 -𝑒 ( 𝐵 𝐷 𝐶 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ↔ ( 𝐴 𝐷 𝐶 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐵 𝐷 𝐶 ) ) ) ) | |
| 19 | 5 7 9 11 15 17 18 | syl33anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐷 𝐶 ) +𝑒 -𝑒 ( 𝐵 𝐷 𝐶 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ↔ ( 𝐴 𝐷 𝐶 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐵 𝐷 𝐶 ) ) ) ) |
| 20 | 3 19 | mpbird | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) +𝑒 -𝑒 ( 𝐵 𝐷 𝐶 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |