This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xblcntrps | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → 𝑃 ∈ 𝑋 ) | |
| 2 | psmet0 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑃 ) = 0 ) | |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → ( 𝑃 𝐷 𝑃 ) = 0 ) |
| 4 | simp3r | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → 0 < 𝑅 ) | |
| 5 | 3 4 | eqbrtrd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → ( 𝑃 𝐷 𝑃 ) < 𝑅 ) |
| 6 | elblps | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑃 ) < 𝑅 ) ) ) | |
| 7 | 6 | 3adant3r | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → ( 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑃 ) < 𝑅 ) ) ) |
| 8 | 1 5 7 | mpbir2and | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) |