This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivation of the length of a word W whose concatenation with a singleton word represents a walk of a fixed length N (a partial reverse closure theorem). (Contributed by AV, 4-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wwlksnprcl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ ( 𝑁 WWalksN 𝐺 ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswwlksn | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( 𝑁 + 1 ) ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( 𝑁 + 1 ) ) ) ) |
| 3 | ccatws1lenp1b | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( 𝑁 + 1 ) ↔ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) | |
| 4 | 3 | biimpd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( 𝑁 + 1 ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 5 | 4 | adantld | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( 𝑁 + 1 ) ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 6 | 2 5 | sylbid | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ ( 𝑁 WWalksN 𝐺 ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |