This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The length of a word is N iff the length of the concatenation of the word with a singleton word is N + 1 . (Contributed by AV, 4-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatws1lenp1b | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( 𝑁 + 1 ) ↔ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatws1len | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 3 | 2 | eqeq1d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( 𝑁 + 1 ) ↔ ( ( ♯ ‘ 𝑊 ) + 1 ) = ( 𝑁 + 1 ) ) ) |
| 4 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 5 | 4 | nn0cnd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 7 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 9 | 1cnd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 10 | 6 8 9 | addcan2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝑊 ) + 1 ) = ( 𝑁 + 1 ) ↔ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 11 | 3 10 | bitrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( 𝑁 + 1 ) ↔ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |