This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivation of the length of a word W whose concatenation with a singleton word represents a walk of a fixed length N (a partial reverse closure theorem). (Contributed by AV, 4-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wwlksnprcl | |- ( ( W e. Word V /\ N e. NN0 ) -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( # ` W ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswwlksn | |- ( N e. NN0 -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) <-> ( ( W ++ <" X "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) ) ) |
|
| 2 | 1 | adantl | |- ( ( W e. Word V /\ N e. NN0 ) -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) <-> ( ( W ++ <" X "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) ) ) |
| 3 | ccatws1lenp1b | |- ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) |
|
| 4 | 3 | biimpd | |- ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( # ` W ) = N ) ) |
| 5 | 4 | adantld | |- ( ( W e. Word V /\ N e. NN0 ) -> ( ( ( W ++ <" X "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( # ` W ) = N ) ) |
| 6 | 2 5 | sylbid | |- ( ( W e. Word V /\ N e. NN0 ) -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( # ` W ) = N ) ) |