This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a word represents a walk of a fixed length, then the last symbol of the word is the endvertex of the walk. (Contributed by AV, 8-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wwlknlsw | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑊 ‘ 𝑁 ) = ( lastS ‘ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlknbp1 | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) | |
| 2 | lsw | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 4 | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) | |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
| 6 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 7 | pncan1 | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 10 | 5 9 | eqtrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝑁 ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ 𝑁 ) ) |
| 12 | 3 11 | eqtr2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ‘ 𝑁 ) = ( lastS ‘ 𝑊 ) ) |
| 13 | 1 12 | syl | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑊 ‘ 𝑁 ) = ( lastS ‘ 𝑊 ) ) |