This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdval | |- ( S e. V -> Word S = U_ l e. NN0 ( S ^m ( 0 ..^ l ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word | |- Word S = { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } |
|
| 2 | eliun | |- ( w e. U_ l e. NN0 ( S ^m ( 0 ..^ l ) ) <-> E. l e. NN0 w e. ( S ^m ( 0 ..^ l ) ) ) |
|
| 3 | ovex | |- ( 0 ..^ l ) e. _V |
|
| 4 | elmapg | |- ( ( S e. V /\ ( 0 ..^ l ) e. _V ) -> ( w e. ( S ^m ( 0 ..^ l ) ) <-> w : ( 0 ..^ l ) --> S ) ) |
|
| 5 | 3 4 | mpan2 | |- ( S e. V -> ( w e. ( S ^m ( 0 ..^ l ) ) <-> w : ( 0 ..^ l ) --> S ) ) |
| 6 | 5 | rexbidv | |- ( S e. V -> ( E. l e. NN0 w e. ( S ^m ( 0 ..^ l ) ) <-> E. l e. NN0 w : ( 0 ..^ l ) --> S ) ) |
| 7 | 2 6 | bitrid | |- ( S e. V -> ( w e. U_ l e. NN0 ( S ^m ( 0 ..^ l ) ) <-> E. l e. NN0 w : ( 0 ..^ l ) --> S ) ) |
| 8 | 7 | eqabdv | |- ( S e. V -> U_ l e. NN0 ( S ^m ( 0 ..^ l ) ) = { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } ) |
| 9 | 1 8 | eqtr4id | |- ( S e. V -> Word S = U_ l e. NN0 ( S ^m ( 0 ..^ l ) ) ) |