This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word of length two represented as unordered pair of ordered pairs. (Contributed by AV, 20-Oct-2018) (Proof shortened by AV, 26-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrd2pr2op | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → 𝑊 = { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn | ⊢ ( 𝑊 ∈ Word 𝑉 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 3 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 2 ) ) | |
| 4 | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } | |
| 5 | 3 4 | eqtr2di | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → { 0 , 1 } = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → { 0 , 1 } = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 7 | 6 | fneq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → ( 𝑊 Fn { 0 , 1 } ↔ 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 8 | 2 7 | mpbird | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → 𝑊 Fn { 0 , 1 } ) |
| 9 | c0ex | ⊢ 0 ∈ V | |
| 10 | 1ex | ⊢ 1 ∈ V | |
| 11 | 9 10 | fnprb | ⊢ ( 𝑊 Fn { 0 , 1 } ↔ 𝑊 = { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } ) |
| 12 | 8 11 | sylib | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → 𝑊 = { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } ) |