This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word of length two is a doubleton word. (Contributed by AV, 25-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdl2exs2 | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → ∃ 𝑠 ∈ 𝑆 ∃ 𝑡 ∈ 𝑆 𝑊 = 〈“ 𝑠 𝑡 ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1le2 | ⊢ 1 ≤ 2 | |
| 2 | breq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( 1 ≤ ( ♯ ‘ 𝑊 ) ↔ 1 ≤ 2 ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → 1 ≤ ( ♯ ‘ 𝑊 ) ) |
| 4 | wrdsymb1 | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑆 ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → ( 𝑊 ‘ 0 ) ∈ 𝑆 ) |
| 6 | lsw | ⊢ ( 𝑊 ∈ Word 𝑆 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 7 | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 2 − 1 ) ) | |
| 8 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 9 | 7 8 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( ( ♯ ‘ 𝑊 ) − 1 ) = 1 ) |
| 10 | 9 | fveq2d | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ 1 ) ) |
| 11 | 6 10 | sylan9eq | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ 1 ) ) |
| 12 | 2nn | ⊢ 2 ∈ ℕ | |
| 13 | lswlgt0cl | ⊢ ( ( 2 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 2 ) ) → ( lastS ‘ 𝑊 ) ∈ 𝑆 ) | |
| 14 | 12 13 | mpan | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → ( lastS ‘ 𝑊 ) ∈ 𝑆 ) |
| 15 | 11 14 | eqeltrrd | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → ( 𝑊 ‘ 1 ) ∈ 𝑆 ) |
| 16 | wrdlen2s2 | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 ) | |
| 17 | id | ⊢ ( 𝑠 = ( 𝑊 ‘ 0 ) → 𝑠 = ( 𝑊 ‘ 0 ) ) | |
| 18 | eqidd | ⊢ ( 𝑠 = ( 𝑊 ‘ 0 ) → 𝑡 = 𝑡 ) | |
| 19 | 17 18 | s2eqd | ⊢ ( 𝑠 = ( 𝑊 ‘ 0 ) → 〈“ 𝑠 𝑡 ”〉 = 〈“ ( 𝑊 ‘ 0 ) 𝑡 ”〉 ) |
| 20 | 19 | eqeq2d | ⊢ ( 𝑠 = ( 𝑊 ‘ 0 ) → ( 𝑊 = 〈“ 𝑠 𝑡 ”〉 ↔ 𝑊 = 〈“ ( 𝑊 ‘ 0 ) 𝑡 ”〉 ) ) |
| 21 | eqidd | ⊢ ( 𝑡 = ( 𝑊 ‘ 1 ) → ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) | |
| 22 | id | ⊢ ( 𝑡 = ( 𝑊 ‘ 1 ) → 𝑡 = ( 𝑊 ‘ 1 ) ) | |
| 23 | 21 22 | s2eqd | ⊢ ( 𝑡 = ( 𝑊 ‘ 1 ) → 〈“ ( 𝑊 ‘ 0 ) 𝑡 ”〉 = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 ) |
| 24 | 23 | eqeq2d | ⊢ ( 𝑡 = ( 𝑊 ‘ 1 ) → ( 𝑊 = 〈“ ( 𝑊 ‘ 0 ) 𝑡 ”〉 ↔ 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 ) ) |
| 25 | 20 24 | rspc2ev | ⊢ ( ( ( 𝑊 ‘ 0 ) ∈ 𝑆 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑆 ∧ 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 ) → ∃ 𝑠 ∈ 𝑆 ∃ 𝑡 ∈ 𝑆 𝑊 = 〈“ 𝑠 𝑡 ”〉 ) |
| 26 | 5 15 16 25 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → ∃ 𝑠 ∈ 𝑆 ∃ 𝑡 ∈ 𝑆 𝑊 = 〈“ 𝑠 𝑡 ”〉 ) |