This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a nonempty word is an element of the alphabet for the word. (Contributed by Alexander van der Vekens, 1-Oct-2018) (Proof shortened by AV, 29-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lswlgt0cl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | eleq1 | ⊢ ( 𝑁 = ( ♯ ‘ 𝑊 ) → ( 𝑁 ∈ ℕ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) | |
| 3 | 2 | eqcoms | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ∈ ℕ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑁 ∈ ℕ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 5 | wrdfin | ⊢ ( 𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin ) | |
| 6 | hashnncl | ⊢ ( 𝑊 ∈ Fin → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
| 8 | 7 | biimpd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → 𝑊 ≠ ∅ ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → 𝑊 ≠ ∅ ) ) |
| 10 | 4 9 | sylbid | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑁 ∈ ℕ → 𝑊 ≠ ∅ ) ) |
| 11 | 10 | impcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → 𝑊 ≠ ∅ ) |
| 12 | lswcl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) | |
| 13 | 1 11 12 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) |