This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the collection of walks with particular endpoints (in a hypergraph). The predicate F ( A ( WalksOnG ) B ) P can be read as "The pair <. F , P >. represents a walk from vertex A to vertex B in a graph G ", see also iswlkon . This corresponds to the "x0-x(l)-walks", see Definition in Bollobas p. 5. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017) (Revised by AV, 28-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wlkson | ⊢ WalksOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwlkson | ⊢ WalksOn | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | va | ⊢ 𝑎 | |
| 4 | cvtx | ⊢ Vtx | |
| 5 | 1 | cv | ⊢ 𝑔 |
| 6 | 5 4 | cfv | ⊢ ( Vtx ‘ 𝑔 ) |
| 7 | vb | ⊢ 𝑏 | |
| 8 | vf | ⊢ 𝑓 | |
| 9 | vp | ⊢ 𝑝 | |
| 10 | 8 | cv | ⊢ 𝑓 |
| 11 | cwlks | ⊢ Walks | |
| 12 | 5 11 | cfv | ⊢ ( Walks ‘ 𝑔 ) |
| 13 | 9 | cv | ⊢ 𝑝 |
| 14 | 10 13 12 | wbr | ⊢ 𝑓 ( Walks ‘ 𝑔 ) 𝑝 |
| 15 | cc0 | ⊢ 0 | |
| 16 | 15 13 | cfv | ⊢ ( 𝑝 ‘ 0 ) |
| 17 | 3 | cv | ⊢ 𝑎 |
| 18 | 16 17 | wceq | ⊢ ( 𝑝 ‘ 0 ) = 𝑎 |
| 19 | chash | ⊢ ♯ | |
| 20 | 10 19 | cfv | ⊢ ( ♯ ‘ 𝑓 ) |
| 21 | 20 13 | cfv | ⊢ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) |
| 22 | 7 | cv | ⊢ 𝑏 |
| 23 | 21 22 | wceq | ⊢ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 |
| 24 | 14 18 23 | w3a | ⊢ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) |
| 25 | 24 8 9 | copab | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } |
| 26 | 3 7 6 6 25 | cmpo | ⊢ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) |
| 27 | 1 2 26 | cmpt | ⊢ ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) ) |
| 28 | 0 27 | wceq | ⊢ WalksOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) ) |