This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iswrdsymb | ⊢ ( ( 𝑊 ∈ Word V ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) → 𝑊 ∈ Word 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn | ⊢ ( 𝑊 ∈ Word V → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 2 | 1 | anim1i | ⊢ ( ( 𝑊 ∈ Word V ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) → ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) ) |
| 3 | ffnfv | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉 ↔ ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) ) | |
| 4 | 2 3 | sylibr | ⊢ ( ( 𝑊 ∈ Word V ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉 ) |
| 5 | iswrdi | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉 → 𝑊 ∈ Word 𝑉 ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑊 ∈ Word V ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) → 𝑊 ∈ Word 𝑉 ) |