This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wfis2fg.1 | ⊢ Ⅎ 𝑦 𝜓 | |
| wfis2fg.2 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | ||
| wfis2fg.3 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | ||
| Assertion | wfis2fg | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfis2fg.1 | ⊢ Ⅎ 𝑦 𝜓 | |
| 2 | wfis2fg.2 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | wfis2fg.3 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | |
| 4 | wefr | ⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Fr 𝐴 ) |
| 6 | weso | ⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) | |
| 7 | sopo | ⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑅 We 𝐴 → 𝑅 Po 𝐴 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Po 𝐴 ) |
| 10 | simpr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 ) | |
| 11 | 3 1 2 | frpoins2fg | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| 12 | 5 9 10 11 | syl3anc | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |