This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Well-ordered induction
wfis2fg
Metamath Proof Explorer
Description: Well-Ordered Induction Schema, using implicit substitution.
(Contributed by Scott Fenton , 11-Feb-2011) (Proof shortened by Scott
Fenton , 17-Nov-2024)
Ref
Expression
Hypotheses
wfis2fg.1
⊢ Ⅎ y ψ
wfis2fg.2
⊢ y = z → φ ↔ ψ
wfis2fg.3
⊢ y ∈ A → ∀ z ∈ Pred R A y ψ → φ
Assertion
wfis2fg
⊢ R We A ∧ R Se A → ∀ y ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
wfis2fg.1
⊢ Ⅎ y ψ
2
wfis2fg.2
⊢ y = z → φ ↔ ψ
3
wfis2fg.3
⊢ y ∈ A → ∀ z ∈ Pred R A y ψ → φ
4
wefr
⊢ R We A → R Fr A
5
4
adantr
⊢ R We A ∧ R Se A → R Fr A
6
weso
⊢ R We A → R Or A
7
sopo
⊢ R Or A → R Po A
8
6 7
syl
⊢ R We A → R Po A
9
8
adantr
⊢ R We A ∧ R Se A → R Po A
10
simpr
⊢ R We A ∧ R Se A → R Se A
11
3 1 2
frpoins2fg
⊢ R Fr A ∧ R Po A ∧ R Se A → ∀ y ∈ A φ
12
5 9 10 11
syl3anc
⊢ R We A ∧ R Se A → ∀ y ∈ A φ