This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wfis2fg.1 | |- F/ y ps |
|
| wfis2fg.2 | |- ( y = z -> ( ph <-> ps ) ) |
||
| wfis2fg.3 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
||
| Assertion | wfis2fg | |- ( ( R We A /\ R Se A ) -> A. y e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfis2fg.1 | |- F/ y ps |
|
| 2 | wfis2fg.2 | |- ( y = z -> ( ph <-> ps ) ) |
|
| 3 | wfis2fg.3 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
|
| 4 | wefr | |- ( R We A -> R Fr A ) |
|
| 5 | 4 | adantr | |- ( ( R We A /\ R Se A ) -> R Fr A ) |
| 6 | weso | |- ( R We A -> R Or A ) |
|
| 7 | sopo | |- ( R Or A -> R Po A ) |
|
| 8 | 6 7 | syl | |- ( R We A -> R Po A ) |
| 9 | 8 | adantr | |- ( ( R We A /\ R Se A ) -> R Po A ) |
| 10 | simpr | |- ( ( R We A /\ R Se A ) -> R Se A ) |
|
| 11 | 3 1 2 | frpoins2fg | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> A. y e. A ph ) |
| 12 | 5 9 10 11 | syl3anc | |- ( ( R We A /\ R Se A ) -> A. y e. A ph ) |