This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | welb | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ( ◡ 𝑅 Or 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wess | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 We 𝐴 → 𝑅 We 𝐵 ) ) | |
| 2 | 1 | impcom | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → 𝑅 We 𝐵 ) |
| 3 | weso | ⊢ ( 𝑅 We 𝐵 → 𝑅 Or 𝐵 ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → 𝑅 Or 𝐵 ) |
| 5 | cnvso | ⊢ ( 𝑅 Or 𝐵 ↔ ◡ 𝑅 Or 𝐵 ) | |
| 6 | 4 5 | sylib | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ◡ 𝑅 Or 𝐵 ) |
| 7 | 6 | 3ad2antr2 | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ◡ 𝑅 Or 𝐵 ) |
| 8 | wefr | ⊢ ( 𝑅 We 𝐵 → 𝑅 Fr 𝐵 ) | |
| 9 | 2 8 | syl | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → 𝑅 Fr 𝐵 ) |
| 10 | 9 | 3ad2antr2 | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → 𝑅 Fr 𝐵 ) |
| 11 | ssidd | ⊢ ( 𝐵 ⊆ 𝐴 → 𝐵 ⊆ 𝐵 ) | |
| 12 | 11 | 3anim2i | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅ ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅ ) ) |
| 14 | frinfm | ⊢ ( ( 𝑅 Fr 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) | |
| 15 | 10 13 14 | syl2anc | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
| 16 | 7 15 | jca | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ( ◡ 𝑅 Or 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |