This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | welb | |- ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> ( `' R Or B /\ E. x e. B ( A. y e. B -. x `' R y /\ A. y e. B ( y `' R x -> E. z e. B y `' R z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wess | |- ( B C_ A -> ( R We A -> R We B ) ) |
|
| 2 | 1 | impcom | |- ( ( R We A /\ B C_ A ) -> R We B ) |
| 3 | weso | |- ( R We B -> R Or B ) |
|
| 4 | 2 3 | syl | |- ( ( R We A /\ B C_ A ) -> R Or B ) |
| 5 | cnvso | |- ( R Or B <-> `' R Or B ) |
|
| 6 | 4 5 | sylib | |- ( ( R We A /\ B C_ A ) -> `' R Or B ) |
| 7 | 6 | 3ad2antr2 | |- ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> `' R Or B ) |
| 8 | wefr | |- ( R We B -> R Fr B ) |
|
| 9 | 2 8 | syl | |- ( ( R We A /\ B C_ A ) -> R Fr B ) |
| 10 | 9 | 3ad2antr2 | |- ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> R Fr B ) |
| 11 | ssidd | |- ( B C_ A -> B C_ B ) |
|
| 12 | 11 | 3anim2i | |- ( ( B e. C /\ B C_ A /\ B =/= (/) ) -> ( B e. C /\ B C_ B /\ B =/= (/) ) ) |
| 13 | 12 | adantl | |- ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> ( B e. C /\ B C_ B /\ B =/= (/) ) ) |
| 14 | frinfm | |- ( ( R Fr B /\ ( B e. C /\ B C_ B /\ B =/= (/) ) ) -> E. x e. B ( A. y e. B -. x `' R y /\ A. y e. B ( y `' R x -> E. z e. B y `' R z ) ) ) |
|
| 15 | 10 13 14 | syl2anc | |- ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> E. x e. B ( A. y e. B -. x `' R y /\ A. y e. B ( y `' R x -> E. z e. B y `' R z ) ) ) |
| 16 | 7 15 | jca | |- ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> ( `' R Or B /\ E. x e. B ( A. y e. B -. x `' R y /\ A. y e. B ( y `' R x -> E. z e. B y `' R z ) ) ) ) |