This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wdomen2 | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐶 ≼* 𝐴 → 𝐶 ≼* 𝐴 ) | |
| 2 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 3 | domwdom | ⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵 ) |
| 5 | wdomtr | ⊢ ( ( 𝐶 ≼* 𝐴 ∧ 𝐴 ≼* 𝐵 ) → 𝐶 ≼* 𝐵 ) | |
| 6 | 1 4 5 | syl2anr | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≼* 𝐴 ) → 𝐶 ≼* 𝐵 ) |
| 7 | id | ⊢ ( 𝐶 ≼* 𝐵 → 𝐶 ≼* 𝐵 ) | |
| 8 | ensym | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) | |
| 9 | endom | ⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 10 | domwdom | ⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴 ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴 ) |
| 12 | wdomtr | ⊢ ( ( 𝐶 ≼* 𝐵 ∧ 𝐵 ≼* 𝐴 ) → 𝐶 ≼* 𝐴 ) | |
| 13 | 7 11 12 | syl2anr | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≼* 𝐵 ) → 𝐶 ≼* 𝐴 ) |
| 14 | 6 13 | impbida | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵 ) ) |