This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vertex in a multigraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017) (Revised by AV, 12-Dec-2020) (Proof shortened by AV, 15-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
||
| vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | vtxdumgr0nedg | |- ( ( G e. UMGraph /\ U e. V /\ ( D ` U ) = 0 ) -> -. E. v e. V { U , v } e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
|
| 3 | vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
|
| 4 | umgruhgr | |- ( G e. UMGraph -> G e. UHGraph ) |
|
| 5 | 1 2 3 | vtxduhgr0nedg | |- ( ( G e. UHGraph /\ U e. V /\ ( D ` U ) = 0 ) -> -. E. v e. V { U , v } e. E ) |
| 6 | 4 5 | syl3an1 | |- ( ( G e. UMGraph /\ U e. V /\ ( D ` U ) = 0 ) -> -. E. v e. V { U , v } e. E ) |