This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of edges in a simple graph is finite iff its edge function is finite. (Contributed by AV, 10-Jan-2020) (Revised by AV, 22-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredgffibi.I | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| usgredgffibi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | usgredgffibi | ⊢ ( 𝐺 ∈ USGraph → ( 𝐸 ∈ Fin ↔ 𝐼 ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredgffibi.I | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | usgredgffibi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 4 | 1 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 5 | 4 | rneqi | ⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
| 6 | 2 3 5 | 3eqtri | ⊢ 𝐸 = ran 𝐼 |
| 7 | 6 | eleq1i | ⊢ ( 𝐸 ∈ Fin ↔ ran 𝐼 ∈ Fin ) |
| 8 | 1 | fvexi | ⊢ 𝐼 ∈ V |
| 9 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 10 | 9 1 | usgrfs | ⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 11 | f1vrnfibi | ⊢ ( ( 𝐼 ∈ V ∧ 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( 𝐼 ∈ Fin ↔ ran 𝐼 ∈ Fin ) ) | |
| 12 | 8 10 11 | sylancr | ⊢ ( 𝐺 ∈ USGraph → ( 𝐼 ∈ Fin ↔ ran 𝐼 ∈ Fin ) ) |
| 13 | 7 12 | bitr4id | ⊢ ( 𝐺 ∈ USGraph → ( 𝐸 ∈ Fin ↔ 𝐼 ∈ Fin ) ) |