This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of specifying a partial function from A to B . (Contributed by NM, 13-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funssxp | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
| 2 | 1 | biimpi | ⊢ ( Fun 𝐹 → 𝐹 Fn dom 𝐹 ) |
| 3 | rnss | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ran 𝐹 ⊆ ran ( 𝐴 × 𝐵 ) ) | |
| 4 | rnxpss | ⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 | |
| 5 | 3 4 | sstrdi | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ran 𝐹 ⊆ 𝐵 ) |
| 6 | 2 5 | anim12i | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵 ) ) |
| 7 | df-f | ⊢ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |
| 9 | dmss | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → dom 𝐹 ⊆ dom ( 𝐴 × 𝐵 ) ) | |
| 10 | dmxpss | ⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 | |
| 11 | 9 10 | sstrdi | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → dom 𝐹 ⊆ 𝐴 ) |
| 12 | 11 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → dom 𝐹 ⊆ 𝐴 ) |
| 13 | 8 12 | jca | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) ) |
| 14 | ffun | ⊢ ( 𝐹 : dom 𝐹 ⟶ 𝐵 → Fun 𝐹 ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) → Fun 𝐹 ) |
| 16 | fssxp | ⊢ ( 𝐹 : dom 𝐹 ⟶ 𝐵 → 𝐹 ⊆ ( dom 𝐹 × 𝐵 ) ) | |
| 17 | xpss1 | ⊢ ( dom 𝐹 ⊆ 𝐴 → ( dom 𝐹 × 𝐵 ) ⊆ ( 𝐴 × 𝐵 ) ) | |
| 18 | 16 17 | sylan9ss | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) |
| 19 | 15 18 | jca | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) ) |
| 20 | 13 19 | impbii | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) ) |