This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector subtraction is jointly continuous in both arguments. (Contributed by Mario Carneiro, 6-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vmcn.c | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| vmcn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | ||
| vmcn.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| Assertion | vmcn | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vmcn.c | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| 2 | vmcn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 3 | vmcn.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 7 | 4 5 6 3 | nvmfval | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 = ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ) |
| 8 | 4 1 | imsxmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐶 ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑈 ) ) ) |
| 9 | 2 | mopntopon | ⊢ ( 𝐶 ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑈 ) ) → 𝐽 ∈ ( TopOn ‘ ( BaseSet ‘ 𝑈 ) ) ) |
| 10 | 8 9 | syl | ⊢ ( 𝑈 ∈ NrmCVec → 𝐽 ∈ ( TopOn ‘ ( BaseSet ‘ 𝑈 ) ) ) |
| 11 | 10 10 | cnmpt1st | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 12 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 13 | 12 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 14 | 13 | a1i | ⊢ ( 𝑈 ∈ NrmCVec → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 15 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 16 | 15 | a1i | ⊢ ( 𝑈 ∈ NrmCVec → - 1 ∈ ℂ ) |
| 17 | 10 10 14 16 | cnmpt2c | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ - 1 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 18 | 10 10 | cnmpt2nd | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 19 | 1 2 6 12 | smcn | ⊢ ( 𝑈 ∈ NrmCVec → ( ·𝑠OLD ‘ 𝑈 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t 𝐽 ) Cn 𝐽 ) ) |
| 20 | 10 10 17 18 19 | cnmpt22f | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 21 | 1 2 5 | vacn | ⊢ ( 𝑈 ∈ NrmCVec → ( +𝑣 ‘ 𝑈 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 22 | 10 10 11 20 21 | cnmpt22f | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 23 | 7 22 | eqeltrd | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |