This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Excercise 4j of Unit 15 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. This proof is the minimized Hilbert-style axiomatic version of the Fitch-style Natural Deduction proof found on page 442 of Klenk and was automatically derived from that proof. vk15.4j is vk15.4jVD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vk15.4j.1 | ⊢ ¬ ( ∃ 𝑥 ¬ 𝜑 ∧ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) | |
| vk15.4j.2 | ⊢ ( ∀ 𝑥 𝜒 → ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) | ||
| vk15.4j.3 | ⊢ ¬ ∀ 𝑥 ( 𝜏 → 𝜑 ) | ||
| Assertion | vk15.4j | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∀ 𝑥 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vk15.4j.1 | ⊢ ¬ ( ∃ 𝑥 ¬ 𝜑 ∧ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) | |
| 2 | vk15.4j.2 | ⊢ ( ∀ 𝑥 𝜒 → ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) | |
| 3 | vk15.4j.3 | ⊢ ¬ ∀ 𝑥 ( 𝜏 → 𝜑 ) | |
| 4 | exanali | ⊢ ( ∃ 𝑥 ( 𝜏 ∧ ¬ 𝜑 ) ↔ ¬ ∀ 𝑥 ( 𝜏 → 𝜑 ) ) | |
| 5 | 3 4 | mpbir | ⊢ ∃ 𝑥 ( 𝜏 ∧ ¬ 𝜑 ) |
| 6 | alex | ⊢ ( ∀ 𝑥 𝜃 ↔ ¬ ∃ 𝑥 ¬ 𝜃 ) | |
| 7 | 6 | biimpri | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 𝜃 ) |
| 8 | 7 | 19.21bi | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → 𝜃 ) |
| 9 | simpl | ⊢ ( ( 𝜏 ∧ ¬ 𝜑 ) → 𝜏 ) | |
| 10 | 9 | a1i | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → 𝜏 ) ) |
| 11 | 19.8a | ⊢ ( ( 𝜃 ∧ 𝜏 ) → ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) | |
| 12 | 8 10 11 | syl6an | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) ) |
| 13 | notnot | ⊢ ( ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) → ¬ ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) | |
| 14 | 12 13 | syl6 | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) ) |
| 15 | con3 | ⊢ ( ( ∀ 𝑥 𝜒 → ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) ) → ( ¬ ¬ ∃ 𝑥 ( 𝜃 ∧ 𝜏 ) → ¬ ∀ 𝑥 𝜒 ) ) | |
| 16 | 2 14 15 | mpsylsyld | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ ∀ 𝑥 𝜒 ) ) |
| 17 | hbe1 | ⊢ ( ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 ∃ 𝑥 ¬ 𝜃 ) | |
| 18 | 17 | hbn | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 ¬ ∃ 𝑥 ¬ 𝜃 ) |
| 19 | hbn1 | ⊢ ( ¬ ∀ 𝑥 𝜒 → ∀ 𝑥 ¬ ∀ 𝑥 𝜒 ) | |
| 20 | 5 16 18 19 | eexinst01 | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∀ 𝑥 𝜒 ) |
| 21 | exnal | ⊢ ( ∃ 𝑥 ¬ 𝜒 ↔ ¬ ∀ 𝑥 𝜒 ) | |
| 22 | 20 21 | sylibr | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∃ 𝑥 ¬ 𝜒 ) |
| 23 | pm3.13 | ⊢ ( ¬ ( ∃ 𝑥 ¬ 𝜑 ∧ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ ∃ 𝑥 ¬ 𝜑 ∨ ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) ) | |
| 24 | 1 23 | ax-mp | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜑 ∨ ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) |
| 25 | simpr | ⊢ ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ 𝜑 ) | |
| 26 | 25 | a1i | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ¬ 𝜑 ) ) |
| 27 | 19.8a | ⊢ ( ¬ 𝜑 → ∃ 𝑥 ¬ 𝜑 ) | |
| 28 | 26 27 | syl6 | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ( 𝜏 ∧ ¬ 𝜑 ) → ∃ 𝑥 ¬ 𝜑 ) ) |
| 29 | hbe1 | ⊢ ( ∃ 𝑥 ¬ 𝜑 → ∀ 𝑥 ∃ 𝑥 ¬ 𝜑 ) | |
| 30 | 5 28 18 29 | eexinst01 | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∃ 𝑥 ¬ 𝜑 ) |
| 31 | notnot | ⊢ ( ∃ 𝑥 ¬ 𝜑 → ¬ ¬ ∃ 𝑥 ¬ 𝜑 ) | |
| 32 | 30 31 | syl | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ¬ ∃ 𝑥 ¬ 𝜑 ) |
| 33 | pm2.53 | ⊢ ( ( ¬ ∃ 𝑥 ¬ 𝜑 ∨ ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ ¬ ∃ 𝑥 ¬ 𝜑 → ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) ) | |
| 34 | 24 32 33 | mpsyl | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ) |
| 35 | exanali | ⊢ ( ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) ↔ ¬ ∀ 𝑥 ( 𝜓 → 𝜒 ) ) | |
| 36 | 35 | con5i | ⊢ ( ¬ ∃ 𝑥 ( 𝜓 ∧ ¬ 𝜒 ) → ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |
| 37 | 34 36 | syl | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |
| 38 | 37 | 19.21bi | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( 𝜓 → 𝜒 ) ) |
| 39 | 38 | con3d | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ¬ 𝜒 → ¬ 𝜓 ) ) |
| 40 | 19.8a | ⊢ ( ¬ 𝜓 → ∃ 𝑥 ¬ 𝜓 ) | |
| 41 | 39 40 | syl6 | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ( ¬ 𝜒 → ∃ 𝑥 ¬ 𝜓 ) ) |
| 42 | hbe1 | ⊢ ( ∃ 𝑥 ¬ 𝜓 → ∀ 𝑥 ∃ 𝑥 ¬ 𝜓 ) | |
| 43 | 22 41 18 42 | eexinst11 | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ∃ 𝑥 ¬ 𝜓 ) |
| 44 | exnal | ⊢ ( ∃ 𝑥 ¬ 𝜓 ↔ ¬ ∀ 𝑥 𝜓 ) | |
| 45 | 43 44 | sylib | ⊢ ( ¬ ∃ 𝑥 ¬ 𝜃 → ¬ ∀ 𝑥 𝜓 ) |