This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: exinst11 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eexinst11.1 | ⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) | |
| eexinst11.2 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | ||
| eexinst11.3 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | ||
| eexinst11.4 | ⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) | ||
| Assertion | eexinst11 | ⊢ ( 𝜑 → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eexinst11.1 | ⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) | |
| 2 | eexinst11.2 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 3 | eexinst11.3 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 4 | eexinst11.4 | ⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) | |
| 5 | 3 4 2 | exlimdh | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → 𝜒 ) ) |
| 6 | 1 5 | syl5com | ⊢ ( 𝜑 → ( 𝜑 → 𝜒 ) ) |
| 7 | 6 | pm2.43i | ⊢ ( 𝜑 → 𝜒 ) |