This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Excercise 4j of Unit 15 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. This proof is the minimized Hilbert-style axiomatic version of the Fitch-style Natural Deduction proof found on page 442 of Klenk and was automatically derived from that proof. vk15.4j is vk15.4jVD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vk15.4j.1 | |- -. ( E. x -. ph /\ E. x ( ps /\ -. ch ) ) |
|
| vk15.4j.2 | |- ( A. x ch -> -. E. x ( th /\ ta ) ) |
||
| vk15.4j.3 | |- -. A. x ( ta -> ph ) |
||
| Assertion | vk15.4j | |- ( -. E. x -. th -> -. A. x ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vk15.4j.1 | |- -. ( E. x -. ph /\ E. x ( ps /\ -. ch ) ) |
|
| 2 | vk15.4j.2 | |- ( A. x ch -> -. E. x ( th /\ ta ) ) |
|
| 3 | vk15.4j.3 | |- -. A. x ( ta -> ph ) |
|
| 4 | exanali | |- ( E. x ( ta /\ -. ph ) <-> -. A. x ( ta -> ph ) ) |
|
| 5 | 3 4 | mpbir | |- E. x ( ta /\ -. ph ) |
| 6 | alex | |- ( A. x th <-> -. E. x -. th ) |
|
| 7 | 6 | biimpri | |- ( -. E. x -. th -> A. x th ) |
| 8 | 7 | 19.21bi | |- ( -. E. x -. th -> th ) |
| 9 | simpl | |- ( ( ta /\ -. ph ) -> ta ) |
|
| 10 | 9 | a1i | |- ( -. E. x -. th -> ( ( ta /\ -. ph ) -> ta ) ) |
| 11 | 19.8a | |- ( ( th /\ ta ) -> E. x ( th /\ ta ) ) |
|
| 12 | 8 10 11 | syl6an | |- ( -. E. x -. th -> ( ( ta /\ -. ph ) -> E. x ( th /\ ta ) ) ) |
| 13 | notnot | |- ( E. x ( th /\ ta ) -> -. -. E. x ( th /\ ta ) ) |
|
| 14 | 12 13 | syl6 | |- ( -. E. x -. th -> ( ( ta /\ -. ph ) -> -. -. E. x ( th /\ ta ) ) ) |
| 15 | con3 | |- ( ( A. x ch -> -. E. x ( th /\ ta ) ) -> ( -. -. E. x ( th /\ ta ) -> -. A. x ch ) ) |
|
| 16 | 2 14 15 | mpsylsyld | |- ( -. E. x -. th -> ( ( ta /\ -. ph ) -> -. A. x ch ) ) |
| 17 | hbe1 | |- ( E. x -. th -> A. x E. x -. th ) |
|
| 18 | 17 | hbn | |- ( -. E. x -. th -> A. x -. E. x -. th ) |
| 19 | hbn1 | |- ( -. A. x ch -> A. x -. A. x ch ) |
|
| 20 | 5 16 18 19 | eexinst01 | |- ( -. E. x -. th -> -. A. x ch ) |
| 21 | exnal | |- ( E. x -. ch <-> -. A. x ch ) |
|
| 22 | 20 21 | sylibr | |- ( -. E. x -. th -> E. x -. ch ) |
| 23 | pm3.13 | |- ( -. ( E. x -. ph /\ E. x ( ps /\ -. ch ) ) -> ( -. E. x -. ph \/ -. E. x ( ps /\ -. ch ) ) ) |
|
| 24 | 1 23 | ax-mp | |- ( -. E. x -. ph \/ -. E. x ( ps /\ -. ch ) ) |
| 25 | simpr | |- ( ( ta /\ -. ph ) -> -. ph ) |
|
| 26 | 25 | a1i | |- ( -. E. x -. th -> ( ( ta /\ -. ph ) -> -. ph ) ) |
| 27 | 19.8a | |- ( -. ph -> E. x -. ph ) |
|
| 28 | 26 27 | syl6 | |- ( -. E. x -. th -> ( ( ta /\ -. ph ) -> E. x -. ph ) ) |
| 29 | hbe1 | |- ( E. x -. ph -> A. x E. x -. ph ) |
|
| 30 | 5 28 18 29 | eexinst01 | |- ( -. E. x -. th -> E. x -. ph ) |
| 31 | notnot | |- ( E. x -. ph -> -. -. E. x -. ph ) |
|
| 32 | 30 31 | syl | |- ( -. E. x -. th -> -. -. E. x -. ph ) |
| 33 | pm2.53 | |- ( ( -. E. x -. ph \/ -. E. x ( ps /\ -. ch ) ) -> ( -. -. E. x -. ph -> -. E. x ( ps /\ -. ch ) ) ) |
|
| 34 | 24 32 33 | mpsyl | |- ( -. E. x -. th -> -. E. x ( ps /\ -. ch ) ) |
| 35 | exanali | |- ( E. x ( ps /\ -. ch ) <-> -. A. x ( ps -> ch ) ) |
|
| 36 | 35 | con5i | |- ( -. E. x ( ps /\ -. ch ) -> A. x ( ps -> ch ) ) |
| 37 | 34 36 | syl | |- ( -. E. x -. th -> A. x ( ps -> ch ) ) |
| 38 | 37 | 19.21bi | |- ( -. E. x -. th -> ( ps -> ch ) ) |
| 39 | 38 | con3d | |- ( -. E. x -. th -> ( -. ch -> -. ps ) ) |
| 40 | 19.8a | |- ( -. ps -> E. x -. ps ) |
|
| 41 | 39 40 | syl6 | |- ( -. E. x -. th -> ( -. ch -> E. x -. ps ) ) |
| 42 | hbe1 | |- ( E. x -. ps -> A. x E. x -. ps ) |
|
| 43 | 22 41 18 42 | eexinst11 | |- ( -. E. x -. th -> E. x -. ps ) |
| 44 | exnal | |- ( E. x -. ps <-> -. A. x ps ) |
|
| 45 | 43 44 | sylib | |- ( -. E. x -. th -> -. A. x ps ) |