This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The setvar x is not free in E. x ph . Corresponds to the axiom (5) of modal logic (see also modal5 ). (Contributed by NM, 24-Jan-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hbe1 | ⊢ ( ∃ 𝑥 𝜑 → ∀ 𝑥 ∃ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex | ⊢ ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 ) | |
| 2 | hbn1 | ⊢ ( ¬ ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 ¬ 𝜑 ) | |
| 3 | 1 2 | hbxfrbi | ⊢ ( ∃ 𝑥 𝜑 → ∀ 𝑥 ∃ 𝑥 𝜑 ) |