This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzwo | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( ℎ = 𝑀 → ( ℎ ≤ 𝑡 ↔ 𝑀 ≤ 𝑡 ) ) | |
| 2 | 1 | ralbidv | ⊢ ( ℎ = 𝑀 → ( ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 𝑀 ≤ 𝑡 ) ) |
| 3 | 2 | imbi2d | ⊢ ( ℎ = 𝑀 → ( ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ) ↔ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑀 ≤ 𝑡 ) ) ) |
| 4 | breq1 | ⊢ ( ℎ = 𝑚 → ( ℎ ≤ 𝑡 ↔ 𝑚 ≤ 𝑡 ) ) | |
| 5 | 4 | ralbidv | ⊢ ( ℎ = 𝑚 → ( ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 ) ) |
| 6 | 5 | imbi2d | ⊢ ( ℎ = 𝑚 → ( ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ) ↔ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 ) ) ) |
| 7 | breq1 | ⊢ ( ℎ = ( 𝑚 + 1 ) → ( ℎ ≤ 𝑡 ↔ ( 𝑚 + 1 ) ≤ 𝑡 ) ) | |
| 8 | 7 | ralbidv | ⊢ ( ℎ = ( 𝑚 + 1 ) → ( ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
| 9 | 8 | imbi2d | ⊢ ( ℎ = ( 𝑚 + 1 ) → ( ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ) ↔ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 10 | breq1 | ⊢ ( ℎ = 𝑛 → ( ℎ ≤ 𝑡 ↔ 𝑛 ≤ 𝑡 ) ) | |
| 11 | 10 | ralbidv | ⊢ ( ℎ = 𝑛 → ( ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 ) ) |
| 12 | 11 | imbi2d | ⊢ ( ℎ = 𝑛 → ( ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ) ↔ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 ) ) ) |
| 13 | ssel | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( 𝑡 ∈ 𝑆 → 𝑡 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) | |
| 14 | eluzle | ⊢ ( 𝑡 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑡 ) | |
| 15 | 13 14 | syl6 | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( 𝑡 ∈ 𝑆 → 𝑀 ≤ 𝑡 ) ) |
| 16 | 15 | ralrimiv | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ∀ 𝑡 ∈ 𝑆 𝑀 ≤ 𝑡 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑀 ≤ 𝑡 ) |
| 18 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 19 | sstr | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ ) → 𝑆 ⊆ ℤ ) | |
| 20 | 18 19 | mpan2 | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → 𝑆 ⊆ ℤ ) |
| 21 | eluzelz | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑚 ∈ ℤ ) | |
| 22 | breq1 | ⊢ ( 𝑗 = 𝑚 → ( 𝑗 ≤ 𝑡 ↔ 𝑚 ≤ 𝑡 ) ) | |
| 23 | 22 | ralbidv | ⊢ ( 𝑗 = 𝑚 → ( ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 ) ) |
| 24 | 23 | rspcev | ⊢ ( ( 𝑚 ∈ 𝑆 ∧ ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) |
| 25 | 24 | expcom | ⊢ ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ( 𝑚 ∈ 𝑆 → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) ) |
| 26 | 25 | con3rr3 | ⊢ ( ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ¬ 𝑚 ∈ 𝑆 ) ) |
| 27 | ssel2 | ⊢ ( ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) → 𝑡 ∈ ℤ ) | |
| 28 | zre | ⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ℝ ) | |
| 29 | zre | ⊢ ( 𝑡 ∈ ℤ → 𝑡 ∈ ℝ ) | |
| 30 | letri3 | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑚 = 𝑡 ↔ ( 𝑚 ≤ 𝑡 ∧ 𝑡 ≤ 𝑚 ) ) ) | |
| 31 | 28 29 30 | syl2an | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( 𝑚 = 𝑡 ↔ ( 𝑚 ≤ 𝑡 ∧ 𝑡 ≤ 𝑚 ) ) ) |
| 32 | zleltp1 | ⊢ ( ( 𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑡 ≤ 𝑚 ↔ 𝑡 < ( 𝑚 + 1 ) ) ) | |
| 33 | peano2re | ⊢ ( 𝑚 ∈ ℝ → ( 𝑚 + 1 ) ∈ ℝ ) | |
| 34 | 28 33 | syl | ⊢ ( 𝑚 ∈ ℤ → ( 𝑚 + 1 ) ∈ ℝ ) |
| 35 | ltnle | ⊢ ( ( 𝑡 ∈ ℝ ∧ ( 𝑚 + 1 ) ∈ ℝ ) → ( 𝑡 < ( 𝑚 + 1 ) ↔ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) | |
| 36 | 29 34 35 | syl2an | ⊢ ( ( 𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑡 < ( 𝑚 + 1 ) ↔ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
| 37 | 32 36 | bitrd | ⊢ ( ( 𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑡 ≤ 𝑚 ↔ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
| 38 | 37 | ancoms | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( 𝑡 ≤ 𝑚 ↔ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
| 39 | 38 | anbi2d | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( ( 𝑚 ≤ 𝑡 ∧ 𝑡 ≤ 𝑚 ) ↔ ( 𝑚 ≤ 𝑡 ∧ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 40 | 31 39 | bitrd | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( 𝑚 = 𝑡 ↔ ( 𝑚 ≤ 𝑡 ∧ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 41 | 27 40 | sylan2 | ⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( 𝑚 = 𝑡 ↔ ( 𝑚 ≤ 𝑡 ∧ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 42 | eleq1a | ⊢ ( 𝑡 ∈ 𝑆 → ( 𝑚 = 𝑡 → 𝑚 ∈ 𝑆 ) ) | |
| 43 | 42 | ad2antll | ⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( 𝑚 = 𝑡 → 𝑚 ∈ 𝑆 ) ) |
| 44 | 41 43 | sylbird | ⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( ( 𝑚 ≤ 𝑡 ∧ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) → 𝑚 ∈ 𝑆 ) ) |
| 45 | 44 | expd | ⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( 𝑚 ≤ 𝑡 → ( ¬ ( 𝑚 + 1 ) ≤ 𝑡 → 𝑚 ∈ 𝑆 ) ) ) |
| 46 | con1 | ⊢ ( ( ¬ ( 𝑚 + 1 ) ≤ 𝑡 → 𝑚 ∈ 𝑆 ) → ( ¬ 𝑚 ∈ 𝑆 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) | |
| 47 | 45 46 | syl6 | ⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( 𝑚 ≤ 𝑡 → ( ¬ 𝑚 ∈ 𝑆 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 48 | 47 | com23 | ⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( ¬ 𝑚 ∈ 𝑆 → ( 𝑚 ≤ 𝑡 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 49 | 48 | exp32 | ⊢ ( 𝑚 ∈ ℤ → ( 𝑆 ⊆ ℤ → ( 𝑡 ∈ 𝑆 → ( ¬ 𝑚 ∈ 𝑆 → ( 𝑚 ≤ 𝑡 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) ) ) |
| 50 | 49 | com34 | ⊢ ( 𝑚 ∈ ℤ → ( 𝑆 ⊆ ℤ → ( ¬ 𝑚 ∈ 𝑆 → ( 𝑡 ∈ 𝑆 → ( 𝑚 ≤ 𝑡 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) ) ) |
| 51 | 50 | imp41 | ⊢ ( ( ( ( 𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ ) ∧ ¬ 𝑚 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → ( 𝑚 ≤ 𝑡 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
| 52 | 51 | ralimdva | ⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ ) ∧ ¬ 𝑚 ∈ 𝑆 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
| 53 | 52 | ex | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ ) → ( ¬ 𝑚 ∈ 𝑆 → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 54 | 26 53 | sylan9r | ⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 55 | 54 | pm2.43d | ⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
| 56 | 55 | expl | ⊢ ( 𝑚 ∈ ℤ → ( ( 𝑆 ⊆ ℤ ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 57 | 21 56 | syl | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ⊆ ℤ ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 58 | 20 57 | sylani | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 59 | 58 | a2d | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 ) → ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
| 60 | 3 6 9 12 17 59 | uzind4i | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 ) ) |
| 61 | breq1 | ⊢ ( 𝑗 = 𝑛 → ( 𝑗 ≤ 𝑡 ↔ 𝑛 ≤ 𝑡 ) ) | |
| 62 | 61 | ralbidv | ⊢ ( 𝑗 = 𝑛 → ( ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 ) ) |
| 63 | 62 | rspcev | ⊢ ( ( 𝑛 ∈ 𝑆 ∧ ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) |
| 64 | 63 | expcom | ⊢ ( ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 → ( 𝑛 ∈ 𝑆 → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) ) |
| 65 | 64 | con3rr3 | ⊢ ( ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 → ( ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 → ¬ 𝑛 ∈ 𝑆 ) ) |
| 66 | 65 | adantl | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 → ¬ 𝑛 ∈ 𝑆 ) ) |
| 67 | 60 66 | sylcom | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ¬ 𝑛 ∈ 𝑆 ) ) |
| 68 | ssel | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 ∈ 𝑆 → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) | |
| 69 | 68 | con3rr3 | ⊢ ( ¬ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ¬ 𝑛 ∈ 𝑆 ) ) |
| 70 | 69 | adantrd | ⊢ ( ¬ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ¬ 𝑛 ∈ 𝑆 ) ) |
| 71 | 67 70 | pm2.61i | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ¬ 𝑛 ∈ 𝑆 ) |
| 72 | 71 | ex | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 → ¬ 𝑛 ∈ 𝑆 ) ) |
| 73 | 72 | alrimdv | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 → ∀ 𝑛 ¬ 𝑛 ∈ 𝑆 ) ) |
| 74 | eq0 | ⊢ ( 𝑆 = ∅ ↔ ∀ 𝑛 ¬ 𝑛 ∈ 𝑆 ) | |
| 75 | 73 74 | imbitrrdi | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 → 𝑆 = ∅ ) ) |
| 76 | 75 | necon1ad | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( 𝑆 ≠ ∅ → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) ) |
| 77 | 76 | imp | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) |
| 78 | breq2 | ⊢ ( 𝑡 = 𝑘 → ( 𝑗 ≤ 𝑡 ↔ 𝑗 ≤ 𝑘 ) ) | |
| 79 | 78 | cbvralvw | ⊢ ( ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ↔ ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |
| 80 | 79 | rexbii | ⊢ ( ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ↔ ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |
| 81 | 77 80 | sylib | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |