This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer greater than or equal to 3 decreased by 2 is a positive integer, analogous to uz2m1nn . (Contributed by Alexander van der Vekens, 17-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uz3m2nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 − 2 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) ) | |
| 2 | 2lt3 | ⊢ 2 < 3 | |
| 3 | 2re | ⊢ 2 ∈ ℝ | |
| 4 | 3re | ⊢ 3 ∈ ℝ | |
| 5 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 6 | ltletr | ⊢ ( ( 2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 2 < 3 ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) ) | |
| 7 | 3 4 5 6 | mp3an12i | ⊢ ( 𝑁 ∈ ℤ → ( ( 2 < 3 ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) ) |
| 8 | 2 7 | mpani | ⊢ ( 𝑁 ∈ ℤ → ( 3 ≤ 𝑁 → 2 < 𝑁 ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) |
| 11 | 1 10 | sylbi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 < 𝑁 ) |
| 12 | 2nn | ⊢ 2 ∈ ℕ | |
| 13 | eluz3nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) | |
| 14 | nnsub | ⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 < 𝑁 ↔ ( 𝑁 − 2 ) ∈ ℕ ) ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 2 < 𝑁 ↔ ( 𝑁 − 2 ) ∈ ℕ ) ) |
| 16 | 11 15 | mpbid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 − 2 ) ∈ ℕ ) |