This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer greater than or equal to 3 decreased by 2 is a positive integer, analogous to uz2m1nn . (Contributed by Alexander van der Vekens, 17-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uz3m2nn | |- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 | |- ( N e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ N e. ZZ /\ 3 <_ N ) ) |
|
| 2 | 2lt3 | |- 2 < 3 |
|
| 3 | 2re | |- 2 e. RR |
|
| 4 | 3re | |- 3 e. RR |
|
| 5 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 6 | ltletr | |- ( ( 2 e. RR /\ 3 e. RR /\ N e. RR ) -> ( ( 2 < 3 /\ 3 <_ N ) -> 2 < N ) ) |
|
| 7 | 3 4 5 6 | mp3an12i | |- ( N e. ZZ -> ( ( 2 < 3 /\ 3 <_ N ) -> 2 < N ) ) |
| 8 | 2 7 | mpani | |- ( N e. ZZ -> ( 3 <_ N -> 2 < N ) ) |
| 9 | 8 | imp | |- ( ( N e. ZZ /\ 3 <_ N ) -> 2 < N ) |
| 10 | 9 | 3adant1 | |- ( ( 3 e. ZZ /\ N e. ZZ /\ 3 <_ N ) -> 2 < N ) |
| 11 | 1 10 | sylbi | |- ( N e. ( ZZ>= ` 3 ) -> 2 < N ) |
| 12 | 2nn | |- 2 e. NN |
|
| 13 | eluz3nn | |- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
|
| 14 | nnsub | |- ( ( 2 e. NN /\ N e. NN ) -> ( 2 < N <-> ( N - 2 ) e. NN ) ) |
|
| 15 | 12 13 14 | sylancr | |- ( N e. ( ZZ>= ` 3 ) -> ( 2 < N <-> ( N - 2 ) e. NN ) ) |
| 16 | 11 15 | mpbid | |- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) |