This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a topology induced by a uniform structure. Definition 3 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-utop | ⊢ unifTop = ( 𝑢 ∈ ∪ ran UnifOn ↦ { 𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cutop | ⊢ unifTop | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cust | ⊢ UnifOn | |
| 3 | 2 | crn | ⊢ ran UnifOn |
| 4 | 3 | cuni | ⊢ ∪ ran UnifOn |
| 5 | va | ⊢ 𝑎 | |
| 6 | 1 | cv | ⊢ 𝑢 |
| 7 | 6 | cuni | ⊢ ∪ 𝑢 |
| 8 | 7 | cdm | ⊢ dom ∪ 𝑢 |
| 9 | 8 | cpw | ⊢ 𝒫 dom ∪ 𝑢 |
| 10 | vx | ⊢ 𝑥 | |
| 11 | 5 | cv | ⊢ 𝑎 |
| 12 | vv | ⊢ 𝑣 | |
| 13 | 12 | cv | ⊢ 𝑣 |
| 14 | 10 | cv | ⊢ 𝑥 |
| 15 | 14 | csn | ⊢ { 𝑥 } |
| 16 | 13 15 | cima | ⊢ ( 𝑣 “ { 𝑥 } ) |
| 17 | 16 11 | wss | ⊢ ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 |
| 18 | 17 12 6 | wrex | ⊢ ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 |
| 19 | 18 10 11 | wral | ⊢ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 |
| 20 | 19 5 9 | crab | ⊢ { 𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } |
| 21 | 1 4 20 | cmpt | ⊢ ( 𝑢 ∈ ∪ ran UnifOn ↦ { 𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |
| 22 | 0 21 | wceq | ⊢ unifTop = ( 𝑢 ∈ ∪ ran UnifOn ↦ { 𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |