This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of Bollobas p. 1. (Contributed by AV, 1-Jan-2020) (Revised by AV, 9-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isuhgrop | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( 〈 𝑉 , 𝐸 〉 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | ⊢ 〈 𝑉 , 𝐸 〉 ∈ V | |
| 2 | eqid | ⊢ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) | |
| 4 | 2 3 | isuhgr | ⊢ ( 〈 𝑉 , 𝐸 〉 ∈ V → ( 〈 𝑉 , 𝐸 〉 ∈ UHGraph ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) : dom ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ⟶ ( 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∖ { ∅ } ) ) ) |
| 5 | 1 4 | mp1i | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( 〈 𝑉 , 𝐸 〉 ∈ UHGraph ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) : dom ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ⟶ ( 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∖ { ∅ } ) ) ) |
| 6 | opiedgfv | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) | |
| 7 | 6 | dmeqd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → dom ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = dom 𝐸 ) |
| 8 | opvtxfv | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) | |
| 9 | 8 | pweqd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝒫 𝑉 ) |
| 10 | 9 | difeq1d | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 11 | 6 7 10 | feq123d | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) : dom ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ⟶ ( 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∖ { ∅ } ) ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
| 12 | 5 11 | bitrd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( 〈 𝑉 , 𝐸 〉 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |