This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of usgrnloop , not using umgrnloop . (Contributed by Alexander van der Vekens, 19-Aug-2017) (Proof shortened by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 17-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| Assertion | usgrnloopALT | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | 1 2 | usgredgprv | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
| 4 | 3 | imp | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } ) → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 5 | 1 | usgrnloopv | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |
| 6 | 5 | ex | ⊢ ( 𝐺 ∈ USGraph → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) ) |
| 7 | 6 | com23 | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → 𝑀 ≠ 𝑁 ) ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → 𝑀 ≠ 𝑁 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } ) → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → 𝑀 ≠ 𝑁 ) ) |
| 10 | 9 | com12 | ⊢ ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → ( ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } ) → 𝑀 ≠ 𝑁 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } ) → 𝑀 ≠ 𝑁 ) ) |
| 12 | 4 11 | mpcom | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } ) → 𝑀 ≠ 𝑁 ) |
| 13 | 12 | ex | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |
| 14 | 13 | rexlimdva | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |