This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| Assertion | usgrnloop0 | ⊢ ( 𝐺 ∈ USGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | usgrumgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) | |
| 3 | 1 | umgrnloop0 | ⊢ ( 𝐺 ∈ UMGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |
| 4 | 2 3 | syl | ⊢ ( 𝐺 ∈ USGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |