This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of usgrnloop , not using umgrnloop . (Contributed by Alexander van der Vekens, 19-Aug-2017) (Proof shortened by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 17-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
| Assertion | usgrnloopALT | |- ( G e. USGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | 1 2 | usgredgprv | |- ( ( G e. USGraph /\ x e. dom E ) -> ( ( E ` x ) = { M , N } -> ( M e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) ) |
| 4 | 3 | imp | |- ( ( ( G e. USGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> ( M e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) |
| 5 | 1 | usgrnloopv | |- ( ( G e. USGraph /\ M e. ( Vtx ` G ) ) -> ( ( E ` x ) = { M , N } -> M =/= N ) ) |
| 6 | 5 | ex | |- ( G e. USGraph -> ( M e. ( Vtx ` G ) -> ( ( E ` x ) = { M , N } -> M =/= N ) ) ) |
| 7 | 6 | com23 | |- ( G e. USGraph -> ( ( E ` x ) = { M , N } -> ( M e. ( Vtx ` G ) -> M =/= N ) ) ) |
| 8 | 7 | adantr | |- ( ( G e. USGraph /\ x e. dom E ) -> ( ( E ` x ) = { M , N } -> ( M e. ( Vtx ` G ) -> M =/= N ) ) ) |
| 9 | 8 | imp | |- ( ( ( G e. USGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> ( M e. ( Vtx ` G ) -> M =/= N ) ) |
| 10 | 9 | com12 | |- ( M e. ( Vtx ` G ) -> ( ( ( G e. USGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> M =/= N ) ) |
| 11 | 10 | adantr | |- ( ( M e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) -> ( ( ( G e. USGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> M =/= N ) ) |
| 12 | 4 11 | mpcom | |- ( ( ( G e. USGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> M =/= N ) |
| 13 | 12 | ex | |- ( ( G e. USGraph /\ x e. dom E ) -> ( ( E ` x ) = { M , N } -> M =/= N ) ) |
| 14 | 13 | rexlimdva | |- ( G e. USGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) ) |