This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Proof shortened by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| Assertion | usgrnloop | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | usgrumgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) | |
| 3 | 1 | umgrnloop | ⊢ ( 𝐺 ∈ UMGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |
| 4 | 2 3 | syl | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |