This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of usgrnloop0 , not using umgrnloop0 . (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 17-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| Assertion | usgrnloop0ALT | ⊢ ( 𝐺 ∈ USGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | neirr | ⊢ ¬ 𝑈 ≠ 𝑈 | |
| 3 | 1 | usgrnloop | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 , 𝑈 } → 𝑈 ≠ 𝑈 ) ) |
| 4 | 2 3 | mtoi | ⊢ ( 𝐺 ∈ USGraph → ¬ ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 , 𝑈 } ) |
| 5 | simpr | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) → ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) | |
| 6 | dfsn2 | ⊢ { 𝑈 } = { 𝑈 , 𝑈 } | |
| 7 | 5 6 | eqtrdi | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) → ( 𝐸 ‘ 𝑥 ) = { 𝑈 , 𝑈 } ) |
| 8 | 7 | ex | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐸 ‘ 𝑥 ) = { 𝑈 } → ( 𝐸 ‘ 𝑥 ) = { 𝑈 , 𝑈 } ) ) |
| 9 | 8 | reximdv | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 } → ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 , 𝑈 } ) ) |
| 10 | 4 9 | mtod | ⊢ ( 𝐺 ∈ USGraph → ¬ ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) |
| 11 | ralnex | ⊢ ( ∀ 𝑥 ∈ dom 𝐸 ¬ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ↔ ¬ ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) | |
| 12 | 10 11 | sylibr | ⊢ ( 𝐺 ∈ USGraph → ∀ 𝑥 ∈ dom 𝐸 ¬ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) |
| 13 | rabeq0 | ⊢ ( { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ ↔ ∀ 𝑥 ∈ dom 𝐸 ¬ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) | |
| 14 | 12 13 | sylibr | ⊢ ( 𝐺 ∈ USGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |